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To understand the interspike interval (ISI) variability displayed by visual
cortical neurons (Softky & Koch, 1993), it is critical to examine the dynam-
ics of their neuronal integration, as well as the variability in their synap-
tic input current. Most previous models have focused on the latter factor.
We match a simple integrate-and-fire model to the experimentally mea-
sured integrative properties of cortical regular spiking cells (McCormick,
Connors, Lighthall, & Prince, 1985). After setting RC parameters, the post-
spike voltage reset is set to match experimental measurements of neuronal
gain (obtained from in vitro plots of firing frequency versus injected cur-
rent). Examination of the resulting model leads to an intuitive picture of
neuronal integration that unifies the seemingly contradictory 1/

√
N and

random walk pictures that have previously been proposed. When ISIs
are dominated by postspike recovery, 1/

√
N arguments hold and spik-

ing is regular; after the “memory” of the last spike becomes negligible,
spike threshold crossing is caused by input variance around a steady state
and spiking is Poisson. In integrate-and-fire neurons matched to cortical
cell physiology, steady-state behavior is predominant, and ISIs are highly
variable at all physiological firing rates and for a wide range of inhibitory
and excitatory inputs.

1 Introduction

Softky and Koch (1993) have shown that the spike trains of cortical cells in
visual areas V1 and MT display a high degree of variability, as measured by
their interspike interval (ISI) distributions at fixed mean firing rates. Does
this result require revising the classical notion of information transmission
in cortical neurons? By “classical notion,” we mean the view that neurons
integrate many synaptic inputs until reaching some voltage threshold, and
at that point produce a spike. Spikes are then followed by a refractory period,
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972 Todd W. Troyer and Kenneth D. Miller

during which the cell is less likely to produce another spike. If inputs are
uncorrelated, the mean spike rate of such a model neuron depends on the
average frequency of presynaptic events and thus can embody the standard
notion of rate coding.

Softky and Koch (1993) argued that high ISI variability is inconsistent
with a neuron’s acting as an EPSP integrator. The integration of many un-
correlated excitatory synaptic potentials (EPSPs) should result in a time to
threshold (or ISI) that is very regular, since the neuron averages over many
random events. One measure of spike variability is the coefficient of varia-
tion (CV) of the ISI distribution, defined as the standard deviation divided
by the mean. For an EPSP integrator, this should be approximately 1/

√
N,

where N is the number of events necessary to reach threshold. In contrast,
cortical cells have CVs in the range .5 to 1, more closely resembling a random
(i.e., Poisson) process for which CV = 1. As an alternative to simple integra-
tion, Softky and Koch (1993) proposed that active dendritic conductances
may act to amplify submillisecond coincidences in synaptic input, leading
to large random pulses of synaptic current. Thus, they suggested that high
ISI variability may be more consistent with the notion (Abeles, 1982) of
neurons acting as “coincidence detectors” rather than “rate encoders.”

Shadlen and Newsome (1994), following Gerstein and Mandelbrot
(1964), argued that if uncorrelated synaptic inputs to a cell consist of bal-
anced excitation and inhibition, then the membrane voltage follows a ran-
dom walk, leading to ISIs that are quite variable. This balanced inhibition
model is consistent with the classical notion of synaptic integration and
rate coding but requires that excitation and inhibition be tightly balanced
in order to achieve ISI variability consistent with the data.

These arguments can be more clearly understood by considering spike
production as a two-step process. First, synaptic inputs are integrated by
an extensive and complex dendritic tree resulting in a total synaptic current
I(t). Second, the cell produces spikes in response to this synaptic current.
Thus, we expect that spike variability should depend on two factors: the
sensitivity of the spike mechanism to changes in the synaptic current and
the variability in this input current.

Previous discussions of ISI variability have largely focused on the sec-
ond term, that is, under what conditions sufficient input variability can be
achieved. Thus, Softky and Koch (1993) argued that input current variabil-
ity was too low to account for output spiking variability, while Shadlen and
Newsome (1994) argued that a balance of excitation and inhibition could
yield high input variability. Other models demonstrated that network dy-
namics can lead to correlations among synaptic inputs sufficient to yield
high variability (Usher, Stemmler, Koch, & Olami, 1994; Hansel & Sompolin-
sky, 1996) (afferent inputs also have significant correlations; Alonso, Usrey,
& Reid, 1996). However, these investigations generally did not address the
sensitivity of cortical neurons. Neuronal sensitivity has been addressed by
Bell, Mainen, Tsodyks, and Sejnowski (1995), who considered some of the
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Variability in a Cortical Regular Spiking Cell 973

same factors as our work in the context of a Hodgkin-Huxley model.1 Our
work differs in considering simple integrate-and-fire dynamics focusing on
the roles of gain and refractoriness, and, most important, matching model
parameters to experimental data from cortical neurons.

For the purposes of this article, we define neuronal gain as the slope of
a plot of firing frequency f = 1/ISI versus the (constant) level of injected
current I. Although there is no direct relationship between this measure and
neuronal sensitivity under physiological conditions—neuronal gain is mea-
sured in the absence of input variability—we will argue that the two should
be well correlated. Here we demonstrate that matching a simple integrate-
and-fire model to experimentally measured values of neuronal gain can
largely solve the conundrum of high ISI variability in visual cortical cells
with many random synaptic inputs. A careful examination of this model
leads to a relatively simple, intuitive picture of cortical neuronal integration
that unifies the seemingly contradictory 1/

√
N and random walk pictures

that have been previously proposed.
A preliminary report of this study has appeared as an abstract (Troyer &

Miller, 1995).

2 The High-Gain Model

In an integrate-and-fire model, the slower, integrative properties of neurons
are modeled as passive changes in subthreshold membrane voltage. The fast
spiking conductances are lumped into a stereotyped event that is “pasted
onto” the voltage trace when the cell reaches threshold. After spiking, there
is an absolute refractory period during which the cell cannot spike, fol-
lowed by a relative refractory period during which the cell’s ability to spike
is reduced. We will use refractoriness to refer to the combined effect of all
processes occurring after a spike that make a cell less likely to respond to a
given pattern of input current with a subsequent spike. Refractoriness can
be defined quantitatively as a function r of the time t after a given spike as
follows. Suppose a just-threshold DC current is applied at or before the spike
time, t = 0. The refractoriness, r(t), is the magnitude of a brief current pulse
that, superimposed on this ongoing DC current at time t, is just sufficient to
elicit a spike.2 Note that this definition includes all factors that contribute to
the cell’s refractoriness, including sodium channel inactivation and the ef-

1 Bell et al. (1995) and Wilbur and Rinzel (1983) also investigated bistability in neuronal
dynamics as a mechanism that could contribute to ISI variability.

2 Assume a spike occurs at t = 0, and that after an absolute refractory period trefract the
voltage is reset to Vreset. Let τ be the membrane time constant, gleak the leak conductance,
and1t the duration of the brief current pulse. Beginning from Vreset at time t = trefract, let
It′ be the DC current that leads to a spike at time t′ (so I∞ is the just-threshold DC current).
Let Vt′ (t) be the time course of the voltage given It′ . Then r(t) ≡ τ

1t gleak(Vt(t)−V∞(t)) =
(It − I∞)(1− e−(t−trefract)/τ ) τ

1t .
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974 Todd W. Troyer and Kenneth D. Miller

fects of other active conductances, as well as spike after-hyperpolarization.3

In the simplest models, refractory effects are modeled by waiting for a fixed,
absolute refractory period after spike onset and then resetting the voltage to
a value significantly below threshold. Thus, a single parameter, the depth of
the after-spike voltage reset, serves to model all of the elements contribut-
ing to the cell’s relative refractoriness.4 More realistic models of the complex
events following a cortical spike may deepen our understanding of cortical
integration, but such models are experimentally poorly constrained and can
lose the clarity motivating the use of simple models.

We use a simple conductance-based integrate-and-fire model:

C
∂V
∂t
= gleak(Vrest − V)+ I. (2.1)

Parameters were matched to slice recordings of regular spiking cells (values
from McCormick et al., 1985, noted in parentheses): Vrest = −74 (73.6 ±
1.5) mV; 1/gleak = 40 (39.9 ± 21.2) MÄ; C = τgleak where τ = 20 (20.2 ±
14.6)msec.5 The absolute refractory period was taken to be the spike width,
tspike = 1.75 (1.74± .41) msec. Spike threshold Vthresh was set 20 mV above
Vrest: Vthresh = −54 mV. This leaves the after-spike reset voltage, Vreset, as
the only free parameter. This parameter is commonly set equal to Vreset, but
this choice lacks physiological justification.

We set Vreset to match the model’s f-I curve to that observed physiolog-
ically, as reported in McCormick et al. (1985) (see Figure 1A). That is, we
set Vreset to match the physiologically observed neuronal gain.6 This yields
Vreset = −60 mV, 6 mV below threshold. Using the f-I curve to set Vreset
points to the strong connection between refractoriness and neuronal gain.
Once τ and gleak are determined from biophysical measurements, neuronal
gain is determined by the cell’s refractory behavior. A cell that is more
refractory requires more input current to spike at any given frequency,
resulting in an inverse relationship between refractoriness and neuronal

3 After-hyperpolarization—the voltage state of the cell—is often regarded as affecting
integration rather than refractoriness, with “refractoriness” reserved for processes that
alter the cell’s spike responses at a given voltage, such as spike threshold elevation. When
considering a cell’s reduced responsiveness to input currents, however, it is most useful
to combine all factors contributing to the reduction.

4 Alternatively, one may consider a two- (or three-) parameter model of refractoriness
in which instead of (or in addition to) postspike voltage reset, there is a postspike elevation
of threshold that decays at some rate (reviewed in Tuckwell, 1988, Table 3.1).

5 The term regular spiking denotes the class of cortical cells that respond to constant
current injection in vitro with single-spike firing and spike-rate adaptation (McCormick et
al., 1985). These constitute most cortical excitatory cells. The term does not imply regularity
of firing in vivo.

6 Matching the slope of the model f-I curve at 100 Hz to the average gain reported by
McCormick et al. (1985) for cortical regular firing cells gives Vreset = −59.75 mV.
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Variability in a Cortical Regular Spiking Cell 975

Figure 1: (A) f-I plots for our high-gain model (solid line) and experiment
(dashed line). For comparison, the dotted line represents the more common
low-gain model, in which Vreset is set to Vrest. Experimental data shown are piece-
wise linear fits to data for first interspike interval from three cells (McCormick
et al. 1985, Fig. 1). (B) ISI histogram from 10 sec of model data: λex = 7015 Hz;
λin = 3263 Hz (R = .75); average firing rate = 98.4 Hz; CV = .6. Inset shows
ISIs > 20 msec. (C) Voltage trace of first 200 msec of simulation in (B).

gain.7 Similarly, greater refractoriness implies weaker sensitivity to phys-
iological inputs. This explains why we connect high gain measured with
constant currents to high sensitivity under physiological conditions: For a
given membrane time constant and input resistance, weaker refractoriness
implies both higher gain and higher physiological sensitivity.

Synaptic input took the form of Poisson distributed delta function con-
ductance changes, Isyn(t) =

∑
k gsynδ(t− tk)(Vsyn−V), where tk denotes the

7 Using the definitions of note 2, r(t) = (It − I∞)(1 − e−(t−trefract)/τ ) τ
1t . Writing gain

G( f ) as a function of firing frequency f (G( f ) is the slope of the f -I curve at f ), this

yields r(t) = (1 − e−(t−trefract)/τ ) τ
1t

∫ f=1/t
f=0 df/G( f ). Thus, high gain corresponds to low

refractoriness.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/9/5/971/813721/neco.1997.9.5.971.pdf by C
olum

bia U
niversity Libraries user on 27 February 2025



976 Todd W. Troyer and Kenneth D. Miller

arrival time of the kth presynaptic spike. gsyn represents the total conduc-
tance, integrated over the time course of the synaptic event, and thus has
units nS msec. gsyn was taken from an exponential distribution with mean
ḡsyn; values greater than 4ḡsyn were then reset to this maximum value.8 For
excitatory synapses, Vex = 0 mV, and ḡex = 3.4 nS msec. This yields EP-
SPs at rest of mean .49 mV and maximum 2 mV. For inhibitory synapses,
Vin = −70 mV, and ḡin = 22.8 nS msec. This yields inhibitory postsynaptic
potentials (IPSPs) that are twice as large as EPSPs at threshold.

The amount of inhibition was expressed as the ratio R of the mean in-
hibitory current to the mean excitatory current at threshold:

R = λin ḡin|Vin − Vthresh|
λex ḡex|Vex − Vthresh|

. (2.2)

Hereλ expresses the mean rate of Poisson input. Note that R = 1 implies that
when voltage is clamped at Vthresh, the total synaptic current has mean zero;
R < 1 corresponds to a surplus of excitatory synaptic current at threshold,
while R > 1 corresponds to a surplus of synaptic inhibition. The leak cur-
rent adds hyperpolarizing current. Estimates forλex andλin rely on counting
arguments only weakly constrained by experimental data (Shadlen & New-
some, 1994). Thus, to examine how model behavior depends on λex and λin,
we fix R and then covary λex and λin to yield varying output firing rates for
that R. We have considered values of R ranging from 0 to 1.25; we will take
R = .75 to be a reasonable guess for the ratio of inhibition to excitation in
cortex.

Balanced inhibition models (Gerstein & Mandelbrot, 1964; Shadlen &
Newsome, 1994) commonly assume equally likely positive and negative
voltage steps, yielding a random walk in voltage. In a conductance-based
model, this translates into a balance of inhibition and excitation sufficient
to give a subthreshold mean current (so that there is not a steady drift
up to near Vthresh). We will roughly equate balance inhibition with R ≥ 1
(although smaller values are conceivable, since even for R = 1 the leak
current maintains the mean voltage somewhat below threshold).9

3 Simulation Results

The results of a typical simulation (R = .75) are shown in Figure 1. Postsy-
naptic average firing rate was 98 Hz for 10 sec of simulated data. We mea-
sured variability by taking the CV of the ISI histogram, and found CV = .6,
which falls in the physiological range of .5 to 1 reported in Softky and Koch
(1993).

8 Thus the mean of the final distribution for gsyn is (1− e−4)ḡsyn.
9 The exact distance below threshold depends on the relative magnitudes of the leak

and mean synaptic conductances. In the limit of high input rates, the leak is negligible,
and R = 1 corresponds to a mean synaptic current just sufficient to elicit depolarization
to threshold.
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Variability in a Cortical Regular Spiking Cell 977

What expectations do we have for CV in these simple models? We expect
CV to be bounded above by the CV of a Poisson process with dead time
equal to the minimum recovery period. With mean ISIµ and dead time tdead,
CVmax = (µ − tdead)/µ. For the simulation in Figure 1, tdead = tspike gives
CVmax = .83, while taking tdead equal to the shortest interval observed
(2.75 msec) yields CVmax = .73.10 A rough lower bound can be obtained
from the case of pure EPSP integration. In our high-gain model, it takes
16 average-sized EPSPs to reach threshold from reset (recall that EPSPs are
reduced by three-fourths near threshold). Again accounting for dead time
of tdead = tspike, a 1/

√
N argument yields CV = .83

√
16 = .2. With variable-

sized PSPs, this estimate should be adjusted upward by a factor of roughly√
2 yielding CV ≈ .28 (Softky & Koch, 1993; Stein, 1967). The reason that

1/
√

N arguments fail to estimate CV accurately will be discussed shortly.
We measured the dependence of CV on postsynaptic firing rate by vary-

ing input rates while keeping the inhibition-to-excitation ratio fixed at R =
.75 (see Figure 2A). Physiologically reasonable levels of CV are obtained
across fiting rates. Also, CV decreases at higher firing rates, as observed
experimentally (Softky & Koch, 1993, Fig. 3). To test the notion the a balance
of excitation and inhibition is required to achieve high variability (Shadlen
& Newsome, 1994; Bell et al., 1995), we varied the inhibition ratio R and
observed ISI variability at input rates that yield postsynaptic firing rates be-
tween 95 and 105 Hz (see Figure 2B). To compare more closely with previous
models that have used low gain,we also ran simulations with Vreset = Vrest.
Balanced inhibition models are those with large R (e.g., R = 1.25),11 while
the low-gain model with excitation only (R = 0, marked “O”) is similar to
the simple EPSP integrator discussed in Softky and Koch (1993). The model
with physiological (high) gain gives physiological CV over a broad range of
R. In contrast, balanced inhibition (R > 1) is necessary to achieve CV > .5
in the low-gain model.

4 An Intuitive Picture

An intuitive grasp of spike variability in simple integrate-and-fire models
can be obtained by roughly dividing the ISI into three regimes (see Figure 3A;
see also Abeles, 1991, Chap. 4; Smith, 1992). In the initial refractory regime,
the state of the neuron is dominated by he recovery from the previous
spike. In this regime 1/

√
N arguments are valid (Smith, 1992), and spiking

is regular. In the final, steady-state regime, the memory of the last spike has
decayed and random synaptic variation causes the cell to fluctuate about

10 For a Poisson process with dead time, the shortest interval, the dead time, and the
peak of the ISI distribution are the same.

11 Shadlen and Newsome (1994) used Vreset = Vrest and hence considered a low-gain
balanced inhibition model.
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978 Todd W. Troyer and Kenneth D. Miller

Figure 2: (A) CV versus output firing rate, for fixed inhibition ratio R = 0.75.
Data shown are mean ± standard deviation for 10 simulations (using different
Poisson trains of inputs) of 10 sec duration.λex ranged from 3396 Hz to 20,509 Hz,
while λin correspondingly varied from 1274 Hz to 7691 Hz. The thin line shows
CV for Poisson process with dead time equal to the shortest ISI observed. With
increasing firing rate, the refractory period is a greater fraction of a typical ISI.
Thus CV decreases with increasing rate. This effect is also seen in the biological
data (Softky & Koch, 1993, Fig. 3). (B) CV versus inhibition ratio R for high gain
(solid line; Vreset = −60 mV) and low gain (dashed line; Vreset = Vrest) models.
R = 1.25 corresponds to example balanced inhibition models. Low gain with
R = 0 corresponds to the EPSP integrator model (marked “O”). At a given level
of R, values ofλex andλin were found for which the 95 percent confidence interval
for the mean spike rate was within the range from 95 to 105 Hz (10 simulations
of 10 sec each). Data shown are from 10 subsequent trials at these input rates. λex

ranged from 4448 Hz to 19,584 Hz for high gain and from 7500 Hz to 23,261 Hz
for low gain; λin varied from 0 Hz to 12,240 Hz (high gain) and from 0 Hz to
14,538 Hz (low gain). The dotted line shows CV = .5.

some steady-state mean voltage (necessarily subthreshold). Thus, threshold
crossings are equally likely to occur in any small interval and spike statistics
are Poisson. In the intermediate regime, the mean voltage is still significantly
rising, yet typical voltage fluctuations can be sufficient to cross threshold.
Spike variability in this regime should be a mixture of 1/

√
N integration

effects and Poisson random crossings. ISI variability depends on the relative
amount of time spent in the regimes.

As shown in Figure 3B, integration in the EPSP integrator model is pri-
marily in the refractory regime, and hence spiking is regular. In the low-gain
balanced-inhibition model, large, transient changes in the balance of exci-
tation and inhibition are large enough to dominate the cell’s refractoriness
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Variability in a Cortical Regular Spiking Cell 979

Figure 3: Mean ± standard deviation of the distribution of voltages.
(A) Schematic showing three regimes of behavior (see text). (B) Data obtained
from repeated (n = 10,000) experiments starting the model (without spiking)
from Vreset. Rates set to achieve firing rates of 100 (±5) Hz. Solid lines are from
the high-gain model (Vreset = −60 mV; R = .75; λex = 8885 Hz; λin = 3332 Hz).
Dashed lines are low-gain models (Vreset = −74 mV = Vrest). Dashed lines are
from the EPSP integrator (R = 0; λex = 7500 Hz; λin = 0 Hz). Dotted lines
are from a low-gain, balanced-inhibition model (R = 1.25; λex = 23,261 Hz;
λin = 14,538 Hz). The arrow points to mean ISI.

rather quickly, and the cell spends most of its time in the intermediate and
steady-state regimes. Note that this recovery is aided by a reduction of the
membrane time constant due to the large synaptic conductance. The small
reset of the high-gain model causes the cell to spend most of the time in the
intermediate or steady-state regimes for virtually any input combinations
that yield biologically reasonable firing rates.

Note that any mechanism that acts to reduce the importance of the tran-
sient, refractory regime contributes to variable spiking. In our model, Vreset
is the dominant parameter determining the significance of the refractory
regime. However, reducing the membrane time constant τ shortens tran-
sients and can emphasize steady-state behavior. Increasing the variability
of the synaptic current results in a more rapid transition to the interme-
diate regime and hence will also increase spike variability. Thus balanced
inhibition, which reduces τ and increases input variability, and high-gain
mechanisms are independent effects that can contribute to variable spiking.
It has been suggested (Bell et al., 1995) that spike variability depends on
the cell’s “hovering” near threshold, so that the integration of only a few
inputs can cause a spike. While this is similar to our explanation of steady-
state behavior, there is a significant difference. In the steady-state regime,
threshold crossings result from random fluctuations in the input current,
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so spiking is always Poisson, regardless of steady-state voltage level. Thus,
the nearness to threshold in the steady-state regime affects spike rate but
does not directly affect spike variability.

5 Discussion

We have shown that matching simple integrate-and-fire neurons to experi-
mental data results in ISI distributions with physiological CV. In additional
studies, we have found that high CV is also produced by more realistic
integrate-and-fire models incorporating the finite time course of synaptic
conductances, realistic combinations of fast and slow excitatory synapses
(AMPA and NMDA), and spike rate adaptation. Lengthening the synaptic
time course can result in input correlations longer than the shortest ISIs and
lead to burstlike behavior that can actually increase CV; a realistic mixture
of fast and slow synapses avoids such burstiness while achieving high CV.12

Does an understanding of the intermediate and steady-state regimes
have implications for neural coding? In these regimes, both the mean synap-
tic current and the variance in this current contribute to neuronal spiking.
A neuron operating in these regimes is certainly capable of rate coding—
coding mean input rates with a mean output rate. When inputs are Poisson,
the mean input rate of excitatory and inhibitory events determines both the
mean and the variance of the total synaptic current and consequently the
mean output rate. However, such a neuron is also capable, in principle, of re-
sponding to input fluctuations with high temporal resolution. The possible
contributions of these different forms of coding will depend on signal-to-
noise considerations—how reliably a given statistical attribute of the input
can be transmitted and be distinguished from random input fluctuations—
that will depend on the details of the statistics of the neuronal input. Thus,
the fact of high CV alone does not serve to distinguish between “rate coding”
and “coincidence detection” or “spike timing” models of neural encoding.

One difficulty with high-gain models is that they display low dynamic
range; relatively small fluctuations in input current can lead to saturated
outputs. In other studies (Troyer & Miller, 1995), we have found that spike
rate adaptation helps to solve this problem by providing negative feedback
that reduces gain on longer time scales, while preserving sensitivity to small
input fluctuations on the time scale of typical interspike intervals. This fits
well with the empirical observations that all excitatory cortical neurons
show spike rate adaptation, while most inhibitory cortical neurons do not
adapt but can sustain high rates of firing without saturating (McCormick et
al., 1985).

12 The burstlike behavior gives an unrealistically low CV2, a measure of variability
that compares only adjacent interspike intervals (Holt, Softky, Koch, & Douglas, 1996).
The mix of fast and slow synapses gives a realistically high CV2.
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Variability in a Cortical Regular Spiking Cell 981

Our high-gain model results in ISI variability that falls in the lower half
of the range .5 to 1 reported in Softky and Koch (1993). If one includes
the refractory period, even a Poisson model cannot account for the upper
reaches of these data. The most likely explanation is that cortical ISI vari-
ability results from a combination of mechanisms (including high gain) that
have generally been explored in isolation. However, ISI variability alone is
inadequate to distinguish the relative contributions of these mechanisms to
cortical integration. Stronger constraints may be found from experiments
designed to probe the biophysical basis of integration and spiking in cortical
cells and from further statistical studies. The latter might examine, in vivo,
the statistics of synaptically driven voltage and current fluctuations as well
as spike train statistics beyond CV, and in vitro, the dependence of firing
rate and CV on both mean and variance of white noise input current. One
recent technique that may shed light on the contribution of cortical inhibi-
tion is the ability to block inhibitory input to a single cell pharmacologically
(Nelson, Toth, Sheth, & Sur, 1994).

To understand cortical ISI variability, classical notions of neuronal inte-
gration must be modified, not by abandoning the integrate-and-fire neuron
but by deepening our understanding of the dynamics of such model neu-
rons. In particular, the common intuition of dynamics dominated by recov-
ery, with 1/

√
N integration behavior, must be supplemented by an under-

standing of a regime in which spike behavior is Poisson. Such a regime has
been well studied in voltage-based integrate-and-fire models using a variety
of statistical approaches (Gerstein & Mandelbrot, 1964; Stein, 1967; Smith,
1992; Tuckwell, 1988, Chap. 9); in certain limits the regime can be described
as an unbiased random walk of voltage with decay. The importance of such
a random, steady-state regime for cortical processing has been discussed
by several previous authors (Abeles, 1991; Shadlen & Newsome, 1994; Bell
et al., 1995). Our contributions are to make specific links between refrac-
toriness and neuronal gain and to demonstrate that an integrate-and-fire
model fitted to known cortical physiology will operate in the intermedi-
ate and steady-state regimes for physiologically reasonable firing rates and
a wide range of ratios of inhibition to excitation. In these regimes, vari-
able spike statistics dominate, and hence the model produces physiological
CV. Thus, in contrast to the intuition presented in Softky and Koch (1993),
one should expect a high degree of ISI variability from cortical neurons.
Of course, a full biophysical understanding of cortical integration may yet
require abandonment of this simple view of cortical processing, but the fact
of cortical ISI variability alone does not.
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